bee

+

-

+

Ganaste Experiencia
INICIAR SESIÓN

Participa en Coopernia

matematicas

Aulalandia / Posts / Matemáticas

Función exponencial y logarítmica - Aprende con Post Educativo

La función exponencial es siempre la inversa de la función logarítmica y ésta, a su vez, es siempre la inversa de la función exponencial. Por eso se dice que ambas funciones son "hermanas". Es importante aprender bien las funciones exponenciales y logarítmicas, porque ambas son de gran importancia en las matemáticas. Entra aquí para aprender a calcular ambos tipos de funciones ¡no te vas a arrepentir!

Recursos Relacionados

¡Ingresa a este entorno de Aprendizaje y Gana!

350 Aulicréditos
Pin coleccionable
medalla ver película

Content on this page requires a newer version of Adobe Flash Player.

Get Adobe Flash player


Imagen: Gráfica de una función
exponencial
La función exponencial es siempre la inversa de la función logarítmica y ésta, a su vez, es siempre la inversa de la función exponencial. Por eso se dice que ambas funciones son "hermanas".

Se llama función exponencial a aquella cuya expresión es: f ( x ) = k . ax + b Esta función tiene por dominio de definición el conjunto de los números reales, y cuenta con una característica particular, ya que su derivada es la misma función.

En la expresión f ( x ) = k . ax + b, el número k es real y distinto de cero, mientras que a es un número real positivo y distin¬to de uno.

Entonces:
• El número k es distinto de cero, ya que si no fuera así, quedaría una función constante: f ( x ) = b , porque se anula el primer término.

• El número a, por su parte, debe ser mayor que cero, ya que si a fuera un número negativo, por ejemplo -4, no podríamos elevarlo 1/2, es decir, sacar su raíz cuadrada.

En el gráfico, la función es creciente, ya que a es mayor que uno, corta al eje de las ordenadas en uno y no tiene raíces, no corta al eje x.

A medida que los valores de x son menores, y toma valores cada vez más próximos a cero. En ese caso, decimos que la función tiene una asíntota horizontal en y = 0.

El dominio de la función son todos los números reales mientras que la imagen son los números reales mayores que cero.

Función logarítmica:

La función logarítmica es del tipo f ( x ) = logb x donde b representa a un número real dis¬tinto de 1 y x es siempre mayor que 0 b ? R; b = 1; x > 0 .

La gráfica de la función logarítmica f ( x ) = log2 x es:


Imagen: Gráfica de la función logarítmica.


Es una gráfica que no corta al eje y, a me¬dida que x toma valores cada vez más próximos al 0, y toma valores cada vez menores. La gráfica muestra que la función es creciente, y corta al eje x en 1 porque todo número distinto de 0 elevado a la 0 da por resultado 1. Por lo tanto, en la función logarítmica la asíntota es vertical.


Imagen: El Line out y la gráfica
de la función exponencial.
Curiosidades

• Cuando en un partido de futbol se produce un saque de meta, el trayecto de la pelota puede ser graficado de acuerdo a la función exponencial. Lo mismo ocurre en los line out del rugby.

• Las funciones exponenciales son muy útiles, entre otras cosas, para conocer cuantos habitantes habrá en una región determinada.


Para saber más sobre este tema, no te pierdas la película:
Para comentar:
¿Para qué sirven las funciones exponenciales?
imagen

Top 5

3

"Muy buen trabajo." fredyhard

¿Para qué sirven las funciones exponenciales?

Comentar

todos los comentarios

ver mas comentarios

Estamos Reconectando
este espacio...

En unos minutos vuelve para disfrutarlo.